If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12a^2+5a=0
a = 12; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·12·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*12}=\frac{-10}{24} =-5/12 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*12}=\frac{0}{24} =0 $
| 8x^2+2x-31=0 | | 8x+35=145 | | 3/8q=24 | | –2r+12+5r–18=–30 | | y+2y+y^2=+5+y | | H(a)=3-2a2 | | -2=(3/2)(x+3) | | 6(2+9k)=34k= | | 5x+12=4x+24 | | 5x-11=-3x+29 | | x2+14x=39 | | 31-7p=-7(p-5) | | 2x+109=85 | | 8n+7=3` | | 2x^2-3x-5=-5 | | 21-7v+v-14=7+6v | | 7(2y-8)=1= | | 7(+2)-10=7x+4 | | 4=⅔(6g+9) | | 90+(4x-8)+(6x+13)=180 | | 1/8(2x+4)=1/4 | | 23x+2=4 | | 6-e-2e-12=-18 | | -25c-8=32 | | 6x+2(x-1)=5(x+2) | | F(15)=2x^2+3 | | F(-3)=2x^2+3 | | 4w-77=104 | | 15=16/0+x | | F(1)=2x^2+3 | | m+14=33 | | 6(2+9k)=34 |